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The idea of  the basis set polarization which follows from the known depen- 
dence of  basis set functions on the perturbation strength is applied to the 
calculation of  the dipole moment  derivatives with respect to nuclear displace- 
ments. The differentiation of the dipole moment  function is replaced by the 
straightforward evaluation of  derivatives of  the intramolecular electric field 
with respect to the external electric field strength. The method and its efficiency 
are illustrated by a series of  calculations of  the dipole moment  derivatives 
for the water molecule. Already a polarized basis set of  26 CGTO's  derived 
from the minimal CGTO basis set provides fairly reasonable results. 
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1. Introduction 

The band intensities in infrared spectra of  polyatomic molecules provide a highly 
sensitive probe of the molecular electronic structure. Owing to recent advances 
in experimental techniques there is an increasing interest in accurate theoretical 
methods for the determination of the corresponding data [1]. 

The calculation of the infrared band intensity can in principle be reduced to the 
evaluation of  derivatives of  the molecular dipole moment  with respect to nuclear 
displacements [2]. Different computational  techniques have been developed for 
that purpose over the past years. Early calculations have mostly been based on 
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the straightforward numerical evaluation of the dipole moment derivatives [3]. 
A partly analytic technique has been suggested by Komornicki and Mclver [4] 
and more recently exploited by Bacskay et al. [5]. 

The major bottleneck of the above-mentioned methods is either the number of 
independent calculations at different molecular geometries [3] or a rather time- 
consuming evaluation of molecular gradients [4-6]. Since the dipole moment 
derivative is a second-order molecular property [7], it is obvious that its accurate 
calculation must be carried out with sufficiently large basis sets. The number of 
numerical evaluations of derivatives is certainly minimized in the methods based 
on gradient techniques [4, 5]. However, the evaluation of gradients of all 
molecular integrals makes such calculations with appropriately extended basis 
sets prohibitively time-consuming. 

Recently, Lazzeretti and Zanasi [8] suggested the evaluation of the dipole moment 
derivatives from the nuclear electric shielding tensors in molecules. Since the 
nuclear shielding can be alternatively expressed in terms of the derivatives of the 
intramolecular electric field at the given nucleus with respect to the external 
electric field, the corresponding finite-field technique would offer similar advan- 
tages to those of the gradient method. As a matter of fact both techniques are 
closely related and become identical in the complete basis set limit. This indicates 
that the suggestion of Lazzeretti and Zanasi might be useful only in large basis 
set calculations. Indeed, quite encouraging results have been obtained for basis 
sets [9, 10] much larger than those commonly employed in molecular calcula- 
tions. 

In the present paper we want to propose an alternative computational scheme 
for the evaluation of the dipole moment derivatives which is based on the 
numerical evaluation of the derivatives of the intramolecular electric fields with 
respect to the external electric field and simultaneously avoids the calculation of 
gradients of molecular integrals. The proposed scheme is based on a specific 
extension of the atomic basis set and follows from the concept of polarized basis 
sets which has recently been exploited in accurate calculations of molecular 
dipole moments [11]. The method presented in this paper is devised for calcula- 
tions of the molecular dipole moment derivatives with relatively standard, highly 
contracted basis sets, e.g. of double-zeta quality. The basis set polarization due 
to virtual nuclear displacements is determined by the known dependence of basis 
set functions on nuclear positions. The same also applies to the contraction 
coefficients for polarization functions derived by polarizing the given initial basis 
set of contracted Gaussian orbitals. 

The efficiency of the computational method proposed in this paper is illustrated 
by calculations of the dipole moment derivatives for the water molecule with 
GTO/CGTO basis sets of different quality. The theoretical background of the 
method is briefly surveyed in the next section. In Sect. 3 the applicability of the 
relation between the dipole moment derivatives and the nuclear shielding tensor 
is illustrated and discussed. A general discussion of the method and conclusions 
are presented in Sect. 4. 
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2. The nuclear electric shielding in molecules and its relation to the 
dipole moment derivatives 

The theory of nuclear electric shielding in molecules has recently been given a 
comprehensive discussion by Lazzeretti and Zanasi [8, 10] and represents an 
alternative formulation of what is known as the polar tensor method [1, 2, 12, 13]. 
For the purpose of summarizing the basic formulae necessary for the present 
discussion, let us consider the electronic Hamiltonian H of a vibrating molecule 
embedded in a homogeneous static electric field F .  Through the first order in 
nuclear displacements X A the Hamiltonian can be written as: 

H(X__, F )  = H(0, 0) + ~  A XAt~+F,~. m= 

o is the a th  component of the molecular dipole moment at the reference where m ,  
nuclear configuration. The summation over repeated Greek indices is implicit. 
In order to stress the double perturbation character of the problem the Hamil- 
tonian (1) is rewritten as: 

H(X___,F__.)=HO+EH1AOXA~+ 01 11 H ~ F ~ + F ~ E  (2) H~,A~XA~ 
A A 

where H ~  H(0,0)  is the electronic Hamiltonian for the reference nuclear 
geometry in the absence of the external field and 

H ~ =  O H  =__ZA~i  [ x I _ _ X A  I 0 - 0 3 

0 1  0 Ho, - m r = E ZAX~ - E x,,~, 
A i 

0 0 
X BI 3 -- X AI 3 

ZA Y, ~o---~-~o~3 (3a) 
A IX__B- X__AI 

(3b) 

The summation over i corresponds to all electrons and xi~ is the a th  component 
of the ith electron coordinate while X~ denotes the a th  component of the 
equilibrium position vector of the nucleus A. 

In the double perturbation expansion of the total energy 

E ( X , E ) = E O + E x A r 3 E ~ +  o, l, F,~E,~ + E FaXAI3Ee~,AI3 + " ' "  (4) 
A A 

the quantitity of interest, 11 E~,A~, is given by 

11 0 10 01 0 01 10 E~,AI3 = Z a ~  + (xtr [ H  A3[xtr ~ ) + (xtr [Ha  ['k~ Afl ) 

where xI r~ xI r~ and ~ o  denote the unperturbed wave function and the solutions 
of the corresponding first-order perturbed equations, respectively. If the solution 
of the electronic Schrrdinger equation with respect to the relevant perturbation 
parameters satisfies the Hellmann-Feynman theorem [14], the following two 
alternative formulae for E~,A0.n . 

11 ) 
F=O 
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and 

E~,A~ = (~(X)[H~ (5b) 
(3XAt3 - -  J_X=X ~ 

are equivalent by virtue of the interchange theorem [15] and it follows from the 
definition of perturbation operators that 1, E~.A~ is the derivative of the a th  
component of the molecular dipole moment with respect to the/3th component 

0/zo 
of the cartesian displacement of the nucleus A, OXA~" 

According to the definition of the nuclear electric shielding tensor To, A~ for the 
nucleus A [10] 

= -2(~~ Z~A H~{*~  (6) "t',~,a/3 

one can write [9, 11] 

0/z~ 
- -  g A  ( t~a,t3 - -  ~/oz, A,8 ) = P~,At3 (7) 

OXA~ 

where P~,A~ is the polar tensor of the nucleus A [1, 2, 12, 13]. The importance 
of Eq. (7) follows from the fact that the evaluation of T~At3 can be made 
computationally much easier and more efficient than the calculation of P~,At3 
from the induced dipole moments (5b). For a system with N nonequivalent 
nuclei, using Eq. (5b) directly would mean the computation of 3N derivatives, 
while all elements of Y=,At3 can be obtained from three derivatives of the matrix 
element 

H IV (s (8) 

i.e. from the average values of the intramolecu!~r electric field calculated in the 
presence of some external electric field F. * * _ L, owever, as already mentioned, the 

,~' (X ,  F the advantages of this observation can only be exploited if ~ ' _  _ )  satisfies 
Hellmann-Feynman theorem with respect to the nuclear displacement perturba- 
tion. In general, the equivalence of three different definitions of the dipole moment 
derivative with respect to nuclear displacements: 

0 2 
M(1) _ _ _ E ( X ,  F) ,  (9a) a,Afl aF~OXa~ 

o 
M(2) m~(X), ~,At3 -- aXA~ 

and 

IAr(3) ~ A~ ( F )  + t~,~ , iv1 or,Aft A ~ __  

(9b) 

(9c) 
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where ms (X) is the average value of the a th  component of the molecular dipole 
moment at the geometry X and eA~(if_F) is the flth component of the average 
value of the intramolecular electric field at the nucleus A in the external electric 
field F ,  is achieved only if ~ ( X ,  __F) satisfies the Hellmann-Feynman theorem 
with respect to both X and __F. 

However, for a number of molecular wave functions [6, 16-19] the appropriate 
form of the Hellmann-Feynman theorem is not satisfied, i.e., 

1 0 
~ A , 8  (_F_ F)  ~ - -  E (X,  _F) - 6~ ,  (10a) 

ZA OXA~ 

and/or 

0 
ms(X) -# ~F--~ E (X__, __F), (10b) 

and thus the equivalence between the three definitions (9) must be considered 
with a particular caution. 

In this context the sum rule [8, 9, 20]: 

ZA')/k, Ak = n, (11) 
A 

where n is the number of electrons, or an equivalent condition for the diagonal 
components of the polar tensor [1, 2]: 

Pk, Ak = O, (12) 
A 

become of particular interest. For the dipole moment derivatives calculated from 
the explicit geometry dependence of m~(X) the sum rule (12) will be satisfied 
provided m~ (X)--(O/OF~)E(X__, F ) .  The conditions for the validity of the latter 
equivalence have been discussed previously [17-19]. In the SCF HF approxima- 
tion, which will be considered in this paper, the equivalence of both sides of Eq. 
(10b) is ensured if the basis sets do not depend explicitly on the external electric 
field strength [17, 18]. This condition is met by the majority of SCF HF calcula- 
tions, and thus, the validity of (12) is quite obvious. 

To satisfy the sum rule (11) one needs to require the equivalence of both sides 
of Eq. (10a). However, most basis sets currently employed in molecular calcula- 
tions inherently depend on the positions of the nuclei. This obviously results in 
differences between the Hellmann-Feynman term (the 1.h.s. of Eq. (10a)) and 
the derivative definition on the r.h.s, of Eq. (10a) [4-6]. Hence, the evaluation 
of the 1.h.s. of Eq. (11) provides a useful check on the quality of the given wave 
function. Checking the sum rule for the nuclear shielding tensor will qualify the 
validity of calculations of Pa, AO with the aid of a much simpler method based 
on Eq. (9c). On the other hand, the non-equivalence of both sides of Eq. (10a) 
may suggest convenient ways of improving the wave function [ 11 ]. 
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3. Evaluation of the dipole moment derivatives from nuclear shielding factors. 
Polarized GTO/CGTO basis sets 

The calculations reported in this paper are limited to the SCF HF approximation. 
Extending this study to a correlated level of approximation is not expected to 
contribute any considerable novelty since the major problem is concerned with 
the basis set dependence on nuclear displacements. The water molecule has been 
chosen as an illustrative example and all calculations correspond to its experi- 
mental equilibrium geometry ( O [0.0, 0.0, 0.0], H1, H2 [0.0, • 1.43153, 1.10941] a.u.). 
However, both the geometry derivatives of the dipole moment and the electric 
field derivatives of the intramolecular electric fields have been computed numeri- 
cally from the pointwise ms (X) and eAr t (F) curves, Different values of the nuclear 
position shifts and electric fields have been explored in order to guarantee the 
appropriate numerical accuracy. It is perhaps worthwhile to mention that the 
numerical differentiation of ea~(F ) with respect to F~ is far more stable than 
the numerical differentiation of m~ (X) with respect to XAt3. 

The first step in our prosent study was to evaluate the degree of the violation of 
the sum rule (11) for a series of different GTO/CGTO basis sets with d and f 
functions on oxygen and p and d functions on hydrogens [9]. The following five 
GTO/CGTO basis sets have been employed: 

A: O[7.3/2.1], HI4/1] 
Taken from Ref. [21] (for O) and Ref. [22] (for H) 

B: O[10.5/4.2], H[4/2] 
Double-zeta set taken from Ref. [23]. 

C: O[11.7/5.4], H[6/3] 
Taken from Ref. [24] with contraction coefficients of Salez and Veillard [25] 
for O. The contraction scheme is the same as used in Ref. [26]. 

D: O[11.7.1/5.4.1], H[6.1/3.1] 
Basis set C extended by the d-type function (ad = 0.85) [27] on oxygen and 
the p-type function function (% = 1.0) on H[27]. 

E: O[14.8.3.1/9.6.3.1], H[10.2.1/6.2.1]. 
Taken from Ref. [9]. 

The qualification of these basis sets in terms of the calculated SCF HF energies, 
dipole moments, the dipole moment derivatives and the sum rules for different 
components of the nuclear shielding tensor, is given in Table 1. The dipole 
moment derivatives displayed in this table have been calculated numerically from 
the dipole moment function. Since all basis sets considered in this paper do not 
depend on the external electric field strength, the sum rule (12) is satisfied within 
the limits of numerical accuracy of our calculations. 

It follows from the data of Table 1 that fairly reasonable values of the dipole 
moment derivatives can be calculated with rather poor GTO/CGTO basis sets 
by the differentiation of the dipole moment curves. This has already been observed 
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Table 1. Qualification of different GTO/CGTO basis sets for the water molecule with respect to the 
total energy and molecular properties. All values in a.u. a 

Property Basis A Basis B Basis C Basis D Basis E b 

E ~ -75.700493 -76.003430 -76.013331 -76.051226 -76.066379 
m ~ 0.9560 1.0557 1.0548 0.8838 0.7831 
eoz -0.3333 -0.2481 -0.2064 -0.0801 -0.0048 
el4~y 0.1697 0.0999 0.0943 0.0079 -0.0072 
eHlz 0.0774 0.0364 0.0346 -0.0011 -0.0087 
M(2) -0.295 -0.514 -0.512 -0.549 -0.557 y, Oy 

M(2) -0.270 -0.385 -0.336 -0.417 -0.429 z,  O z  

M (2) O. 148 0.257 0.256 0.276 0.278 y, H l y  

M(2 -0.219 0.169 -0.170 -0.096 -0.058 "y,/-/1 z 

M(zZ~y -0.180 -0.102 -0.115 -0.051 -0.060 
M~z2~,z 0.135 0.200 0.170 0.211 0.214 

~AZAYy.A, ~ 2.596 4.680 5.762 7.680 9.756 

Z A ' Y z ,  A z  c 0.782 2.196 3.188 6.916 9.808 
A 

a For the geometry and basis set details see text 
b Numerical calculations with the basis set of Lazzeretti and Zanasi [9] 

Evaluated from the numerical derivatives of the intramolecular electric field with respect to the 
external electric field strength. The exact value is equal to 10 

in ear l ier  ca lcu la t ions  [3-5]  and  has s ignif icant ly  con t r ibu ted  to the  d e v e l o p m e n t  
o f  the a tomic  p o l a r  t ensor  concep t  [1, 2, 13]. However ,  how p o o r  the basis  sets 
A t h rough  D are f rom the po in t  o f  view of  the i r  comple teness  is i nd i ca t ed  by  
the sums o f  d i agona l  c o m p o n e n t s  o f  the electr ic  sh ie ld ing  tensor.  Even for  a very 
ex t ended  basis  set o f  Lazzeret t i  and  Zanas i  [9], the co r r e spond ing  sum rules are 
still cons ide r ab ly  v io la ted .  This v io la t ion  o f  the  sum rule (11) for  the nuc lea r  

sh ie ld ing  t enso r  has,  as i l lus t ra ted  by  the da ta  o f  Table  2, even more  p r o n o u n c e d  
effect on the  d ipo le  m o m e n t  der ivat ives  c o m p u t e d  accord ing  to Eq. (9c). Fo r  

�9 - ( 3 )  ~ and  even its signs are incorrect .  basis  sets A th rough  D the magn i tude  of  M~,A, 

Hence ,  the encourag ing  results  o f  Lazzeret t i  and  Zanas i  [8, 9] are p r imar i ly  due 
to the use o f  very large basis  sets. The di rec t  ex tens ion  o f  the m e t h o d  based  on 
the eva lua t ion  o f  nuc lea r  sh ie ld ing  tensors  to larger  molecu les  does  no t  a p p e a r  
to be c o m p u t a t i o n a l l y  feasible.  

On the o ther  h a n d  the g rad ien t  me thods  a d v o c a t e d  by  K o m o r n i c k i  et al. and  
Pulay  et al. [4] require  the  ana ly t ic  ca lcu la t ions  o f  3 N  gradien ts  o f  all  mo lecu l a r  
integrals .  Wi th  increas ing  molecu la r  size and  r ea sonab ly  large basis  sets those  

me thods  b e c o m e  qui te  t ime consuming.  A n  in te rmed ia te  so lu t ion  o f  the  
d imens iona l i t y - t iming  p r o b l e m  can be ach ieved  by  inco rpo ra t ing  some e lements  
o f  the g rad i en t  a p p r o a c h  in the se lect ion o f  the  basis  set. 

The success o f  the  g rad ien t  method ,  or  equiva lent ly ,  the numer ica l  d i f ferent ia t ion  
o f  the d ipo l e  m o m e n t  func t ion  (Eq. 9b) fo l lows f rom the expl ic i t  d e p e n d e n c e  o f  
basis  set func t ions  on the pe r tu rba t ion  p a r a m e t e r  XA~. Hence ,  i f  the p o l a r  t ensor  
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is calculated according to Eq. (9b), the basis set becomes formally extended by 
its first-order derivatives with respect to nuclear positions [17], while its actual 
dimension is the same as for the reference molecular geometry. Hence, by 
extending the given basis set by the first-order derivatives with respect to XA,~ 
one can expect the values of M(~Ar and l~'lAAr(3)ct,A/3 becoming close to each other. 
This idea of exploiting the inherent dependence of basis set functions on the 
perturbation strength has recently been used to derive large basis sets for accurate 
calculations of molecular dipole moments [11]. However, when the initial basis 
set is relatively uncontracted, the dimension of what is termed the resulting 
polarized basis set can easily become prohibitively large. 

The most important feature of the method devised for the derivation of polarized 
basis sets is that the differentiation ofa  CGTO does change its "quantum numbers" 
as well as the contraction coefficients [11]. The latter are scaled by the appropriate 
power of orbital exponents of primitive GTO's contributing to the given CGTO. 
For the initial CGTO, xtkl(A), centered at A and characterized "by the set of 
quantum numbers" [k] with the following expansion in terms of primitive 
normalized GTO's gl kl (A,  ai) 

x~k~(A) = • cig~gl(A, ~i), (13) 
i 

where a~ denotes the orbital exponent, the corresponding polarized basis set 
functions will have the following form 

0 x [ k ] ( A  ) _ { ) ~ [ k _ l l ( A ) ,  )~ [k+l ] (A)} ,  (14) 
OXafl 

where 

)~k• = Z _  ~i~,~'-tk• ~,~, a,) (15) 
i 

and 

t c~ - ' ( - ~  " ci (16) 

According to the concept of the basis set polarization, both functions resulting 
from Eq. (14) have to be used to augment the initial basis set. Obviously, this 
procedure will be of practical value compared to the gradient methods only if 
the dimension of the original CGTO basis set is relatively small. Hence, the 
method proposed in the present paper might be convenient for e.g. minimal or 
double-zeta basis sets. The illustration of its efficiency is given in Tables 3 
and 4. 

The results recalculated in the present paper for the basis set of Lazzeretti and 
Zanasi [9] are taken as a reference. It is worth while to mention that the 
components of the electric shielding tensor computed with Basis E [9] are close 
to those derived from the experimental data [9, 28] for infrared intensities. 

Because of the increase of the size of polarized basis sets compared to the 
dimension of the initial CGTO set we have also investigated the possibility of 
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removing some components of polarization functions (15). It can be concluded 
from the data of  Table 3 that the [ k + 1 ] component resulting from the given X Ekl 
is more important than the component with lowered GTO quantum numbers. 

However, removing the X tk+lJ components (see Column 2 for Basis B), which 
mostly contribute to the dimension of the final polarized basis set, deteriorates 
the spectacular agreement between Column 3 for polarized Basis B and the results 
for Basis E. It should be also pointed out that the results calculated with polarized 
Basis A, which is derived from a minimal CGTO set, are at least qualitatively 
correct. 

The effect of the basis set polarization can also be seen from the diminishing 
degree of violation of  the sum rule (11). This sum rule is even better satisfied for 
completely polarized bases A and B than for Basis E. 

In general, the quality of the dipole moment derivatives calculated with the aid 
of computationally convenient Eq. (9c) and the polarized basis B is at least 
competitive to the results obtained from the derivatives of the dipole moment 
function for Basis E. Also the results which follow from the polarized minimal 
basis set A are quite encouraging. It can also be seen from the data of Table 4 
that the present technique provides a simultaneous improvement of the calculated 
dipole moments and intramolecular electric fields. 

4. Summary and conclusions 

The present proposal of polarized basis sets derived from relatively small highly 
contracted CGTO bases has been shown to result in the possibility of computing 
the dipole moment derivatives from the nuclear electric shielding factors. By the 
method of derivation of these basis sets the Hel lmann-Feynman theorem with 
respect to X is only slightly violated and calculations based on Eqs. (9b) and 
(9c) become almost equivalent. The principal advantage of using Eq. (9c) follows 
from the fact that all dipole moment derivatives can be calculated by using the 

same set of molecular integrals. The'same is obviously true for the use of Eq. 
(9c) with Basis E. However, the basis set comprises as much as 91 CGTO's while 
the corresponding numbers for completely polarized bases A and B are 26 and 
52, respectively. This opens the possibility of accurate calculations of molecular 
dipole moment derivatives for much larger molecules. 

In comparison with gradient techniques [4-6] the present method avoids the 
calculation of  all derivatives of molecular integrals with respect to Xa~ at the 
expense of the increased size of the basis set. Hence, according to the ratio 
timing/dimension, the polarized basis sets can be considered as either competitive 
or an alternative solution. 

The concept of  a polarized basis set derived from some standard initial set of 
CGTO's has previously been employed [11] in calculations of molecular dipole 
moments. A similar idea has also been exploited by Nakatsuji et al. [29] for the 
calculation of molecular force fields and force constants. All these approaches 
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fol low f rom the concep t  o f  p e r t u r b a t i o n - d e p e n d e n t  basis  sets. This d e p e n d e n c e  

can be e i ther  exp lo i t ed  expl ic i t ly  by  using different  forms o f  the  g rad ien t  m e t h o d  
[4-7,  16-18] or  ind i rec t ly  th rough  the pe r t u rba t i on -o r i e n t e d  ex tens ion  o f  s t anda rd  
bases.  In  bo th  cases the  qual i ty  o f  ca lcu la ted  p roper t i e s  appea r s  to fo l low the 
qual i ty  o f  the  energy ca lcu la t ed  with the  given ini t ia l  basis  set [30]. 

The concep t  o f  po l a r i zed  bas is  set shou ld  above  all be u n d e r s t o o d  as a devise  
for  the  c o m p o s i t i o n  of  su i tab le  basis  sets for  accura te  ca lcu la t ions  o f  mo lecu la r  
proper t ies .  I t  is obvious  tha t  with high accuracy  d e m a n d s  one has to use app rop r i -  
a tely large bas is  sets. The m e t h o d  desc r ibed  in this p a p e r  will only  he lp  to define 
the  form o f  the  bas is  set ex tens ion  for  the given proper ty .  Wi th  lowered  accuracy  
d e m a n d s  the  p resen t  m e t h o d  can be efficiently e m p l o y e d  in s t ra igh t fo rward  
finite-field ca lcu la t ions  accord ing  to Eq. (9c). As i l lus t ra ted  in the p rev ious  sect ion 
even for  the  po l a r i zed  min ima l  C G T O  basis  set the accuracy  o f  the  ca lcu la ted  
da t a  is qui te  sa t is factory.  

F ina l ly ,  it shou ld  be  m e n t i o n e d  that  s imi lar  techniques ,  ba sed  on the in te rchange  
theo rem and  the concep t  o f  po la r i zed  basis  sets can be used  in ca lcu la t ions  o f  
o ther  re la ted  proper t ies ,  e.g. h igher -o rder -der iva t ives  o f  the d ipo le  m o m e n t  or  
der ivat ives  o f  h ighe r -o rde r  e lectr ic  proper t ies .  In  pa r t i cu la r  combin ing  the presen t  
t echn ique  with  that  p r o p o s e d  for  ca lcula t ions  o f  e lectr ic  p roper t i e s  [11] can lead  
to h ighly  accura te  der ivat ives  o f  the po la r i zab i l i t y  t ensor  and  p red ic t ions  o f  
mo lecu l a r  R a m a n  spectra .  
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