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Polarized basis sets and the calculation of infrared
intensities from nuclear electric shielding tensors
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The idea of the basis set polarization which follows from the known depen-
dence of basis set functions on the perturbation strength is applied to the
calculation of the dipole moment derivatives with respect to nuclear displace-
ments. The differentiation of the dipole moment function is replaced by the
straightforward evaluation of derivatives of the intramolecular electric field
with respect to the external electric field strength. The method and its efficiency
are illustrated by a series of calculations of the dipole moment derivatives
for the water molecule. Already a polarized basis set of 26 CGTO’s derived
from the minimal CGTO basis set provides fairly reasonable results.
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1. Introduction

The band intensities in infrared spectra of polyatomic molecules provide a highly
sensitive probe of the molecular electronic structure. Owing to recent advances
in experimental techniques there is an increasing interest in accurate theoretical
methods for the determination of the corresponding data [1].

The calculation of the infrared band intensity can in principle be reduced to the
evaluation of derivatives of the molecular dipole moment with respect to nuclear
displacements [2]. Different computational techniques have been developed for
that purpose over the past years. Early calculations have mostly been based on
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the straightforward numerical evaluation of the dipole moment derivatives [3].
A partly analytic technique has been suggested by Komornicki and Mclver [4]
and more recently exploited by Bacskay et al. [5].

The major bottleneck of the above-mentioned methods is either the number of
independent calculations at different molecular geometries [3] or a rather time-
consuming evaluation of molecular gradients [4-6]. Since the dipole moment
derivative is a second-order molecular property [7], it is obvious that its accurate
calculation must be carried out with sufficiently large basis sets. The number of
numerical evaluations of derivatives is certainly minimized in the methods based
on gradient techniques [4,5]. However, the evaluation of gradients of all
molecular integrals makes such calculations with appropriately extended basis
sets prohibitively time-consuming.

Recently, Lazzeretti and Zanasi [8] suggested the evaluation of the dipole moment
derivatives from the nuclear electric shielding tensors in molecules. Since the
nuclear shielding can be alternatively expressed in terms of the derivatives of the
intramolecular electric field at the given nucleus with respect to the external
electric field, the corresponding finite-field technique would offer similar advan-
tages to those of the gradient method. As a matter of fact both techniques are
closely related and become identical in the complete basis set limit. This indicates
that the suggestion of Lazzeretti and Zanasi might be useful only in large basis
set calculations. Indeed, quite encouraging results have been obtained for basis
sets [9, 10] much larger than those commonly employed in molecular calcula-
tions.

In the present paper we want to propose an alternative computational scheme
for the evaluation of the dipole moment derivatives which is based on the
numerical evaluation of the derivatives of the intramolecular electric fields with
respect to the external electric field and simultaneously avoids the calculation of
gradients of molecular integrals. The proposed scheme is based on a specific
extension of the atomic basis set and follows from the concept of polarized basis
sets which has recently been exploited in accurate calculations of molecular
dipole moments [11]. The method presented in this paper is devised for calcula-
tions of the molecular dipole moment derivatives with relatively standard, highly
contracted basis sets, e.g. of double-zeta quality. The basis set polarization due
to virtual nuclear displacements is determined by the known dependence of basis
set functions on nuclear positions. The same also applies to the contraction
coefficients for polarization functions derived by polarizing the given initial basis
set of contracted Gaussian orbitals.

The efficiency of the computational method proposed in this paper is illustrated
by calculations of the dipole moment derivatives for the water molecule with
GTO/CGTO basis sets of different quality. The theoretical background of the
method is briefly surveyed in the next section. In Sect. 3 the applicability of the
relation between the dipole moment derivatives and the nuclear shielding tensor
is illustrated and discussed. A general discussion of the method and conclusions
are presented in Sect. 4.
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2. The nuclear electric shielding in molecules and its relation to the
dipole moment derivatives

The theory of nuclear electric shielding in molecules has recently been given a
comprehensive discussion by Lazzeretti and Zanasi [8, 10] and represents an
alternative formulation of what is known as the polar tensor method [1, 2, 12, 13].
For the purpose of summarizing the basic formulae necessary for the present
discussion, let us consider the electronic Hamiltonian H of a vibrating molecule
embedded in a homogeneous static electric field F. Through the first order in
nuclear displacements X 4 the Hamiltonian can be written as:

H(X, F) = H(0, 0)+z( XH

AB

)XAB-I_F m +F ZZAXAQ, (1)

where m?, is the ath component of the molecular dipole moment at the reference
nuclear configuration. The summation over repeated Greek indices is implicit.
In order to stress the double perturbation character of the problem the Hamil-
tonian (1) is rewritten as:

H(X, F)= H°+ZH . X 19+ HYF, +F, zH,,,ABXAﬂ (2)

where H°= H(0,0) is the electronic Hamiltonian for the reference nuclear
geometry in the absence of the external field and

oH x5 — X X%, — X9
miy=(EL) —-zp2eXi_g, 5 XoXa (3a)
AB i xi— X4 s |X5— X0
Hgl—__mg:%:ZAXAa_ina; (3b)

The summation over i corresponds to all electrons and x;, is the ath component
of the ith electron coordinate while X%, denotes the ath component of the
equilibrium position vector of the nucleus A.

In the double perturbation expansion of the total energy

E(X,F)= E°+ZXABE +FE°1+ZFXA,3E,1AB+ (4)

the quantitity of interest, E' 44, is given by
E L ag = Zs8 s + (WO Hip ¥+ (VO HY W 1y)

where ¥°, W' and ¥4 denote the unperturbed wave function and the solutions
of the corresponding ﬁrst order perturbed equations, respectively. If the solution
of the electronic Schrodinger equation with respect to the relevant perturbation
parameters satisfies the Hellmann-Feynman theorem {14], the following two
alternative formulae for E.!:

Elag=2Z4b.s +{ (W(F)|HY |W(F)>} (5a)

F=0
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and

Elg= {wam‘;‘lwz»} , (sb)
9Xap x=x°

are equivalent by virtue of the interchange theorem [15] and it follows from the

definition of perturbation operators that E.'4; is the derivative of the ath

component of the molecular dipole moment with respect to the Sth component

Ofa

0Xap

of the cartesian displacement of the nucleus A,

According to the definition of the nuclear electric shielding tensor vy, g for the
nucleus A [10]

1
Ya,AB = _2<‘I’O|Z_HLO;3 \Ile) (6)
A

one can write [9, 11]

Ipba
3Xap

= ZA(5aB - ’)’a,As) = Pa,AB 7

where P, 45 is the polar tensor of the nucleus A [1,2,12,13]. The importance
of Eq. (7) follows from the fact that the evaluation of vy.,ss can be made
computationally much easier and more efficient than the calculation of P, 44
from the induced dipole moments (5b). For a system with N nonequivalent
nuclei, using Eq. (5b) directly would mean the computation of 3N derivatives,
while all elements of 7y, 4z can be obtained from three derivatives of the matrix
element

<W(£)|ZiAHi:’B|\If<£>>, ®)

i.e. from the average values of the intramoleculzr electric field calculated in the
presence of some external electric field F. However, as already mentioned, the
advantages of this observation can only be exploited if ¥(X, F) satisfies the
Hellmann-Feynman theorem with respect to the nuclear displacement perturba-
tion. In general, the equivalence of three different definitions of the dipole moment
derivative with respect to nuclear displacements:

2

d
MY, =———E(X, F), 9a
8 S 0 Xas (X, F) (9a)
M= (X)), (9b
LAB aXAﬁm (X) )
and

0
MS:?AB =24 {F €A (F)+ 5043}, (9¢c)

o
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where m,(X) is the average value of the ath component of the molecular dipole
moment at the geometry X and eag(F) is the Bth component of the average
value of the intramolecular electric field at the nucleus A in the external electric
field F, is achieved only if ¥(X, F) satisfies the Hellmann-Feynman theorem
with respect to both X and F.

However, for a number of molecular wave functions [6, 16-19] the appropriate
form of the Hellmann-Feynman theorem is not satisfied, i.e.,

1 0
eap(F) # - E(X, F)— 8, (10a)
As(E) Zp 0Xap P
and/or
m,(X)#——E(X, F) (10b)
a \ L2 aFa St Y

and thus the equivalence between the three definitions (9) must be considered
with a particular caution.

In this context the sum rule [8, 9, 20]:

%ZA')’k,Ak=na (11)

where n is the number of electrons, or an equivalent condition for the diagonal
components of the polar tensor {1, 2]:

%Pk,Ak=0, (12)

become of particular interest. For the dipole moment derivatives calculated from
the explicit geometry dependence of m,(X) the sum rule (12) will be satisfied
provided m,(X)=(3/dF,) E(X, F). The conditions for the validity of the latter
equivalence have been discussed previously [17-19]. In the SCF HF approxima-
tion, which will be considered in this paper, the equivalence of both sides of Eq.
(10b) is ensured if the basis sets do not depend explicitly on the external electric
field strength [17, 18]. This condition is met by the majority of SCF HF calcula-
tions, and thus, the validity of (12) is quite obvious.

To satisfy the sum rule (11) one needs to require the equivalence of both sides
of Eq. (10a). However, most basis sets currently employed in molecular calcula-
tions inherently depend on the positions of the nuclei. This obviously results in
differences between the Hellmann-Feynman term (the l.h.s. of Eq. (10a)) and
the derivative definition on the r.h.s. of Eq. (10a) [4-6]. Hence, the evaluation
of the Lh.s. of Eq. (11) provides a useful check on the quality of the given wave
function. Checking the sum rule for the nuclear shielding tensor will qualify the
validity of calculations of P, 4¢ with the aid of a much simpler method based
on Eq. (9¢). On the other hand, the non-equivalence of both sides of Eq. (10a)
may suggest convenient ways of improving the wave function [11].
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3. Evaluation of the dipole moment derivatives from nuclear shielding factors.
Polarized GTO/CGTO basis sets

The calculations reported in this paper are limited to the SCF HF approximation.
Extending this study to a correlated level of approximation is not expected to
contribute any considerable novelty since the major problem is concerned with
the basis set dependence on nuclear displacements. The water molecule has been
chosen as an illustrative example and all calculations correspond to its experi-
mental equilibrium geometry (0[0.0, 0.0, 0.0], H,, H,[0.0,+1.43153,1.10941] a.u.).
However, both the geometry derivatives of the dipole moment and the electric
field derivatives of the intramolecular electric fields have been computed numeri-
cally from the pointwise m, (X) and e44(F) curves. Different values of the nuclear
position shifts and electric fields have been explored in order to guarantee the
appropriate numerical accuracy. It is perhaps worthwhile to mention that the
numerical differentiation of e,5(F) with respect to F, is far more stable than
the numerical differentiation of m, (X) with respect to X ;.

The first step in our present study was to evaluate the degree of the violation of
the sum rule (11) for a series of different GTO/CGTO basis sets with d and f
functions on oxygen and p and d functions on hydrogens [9]. The following five
GTO/CGTO basis sets have been employed:

A: 0[7.3/2.1], H[4/1]
Taken from Ref. [21] (for O) and Ref. [22] (for H)

B: O[10.5/4.2], H[4/2]
Double-zeta set taken from Ref. [23].

C: O[11.7/5.4], H[6/3]
Taken from Ref. [24] with contraction coefficients of Salez and Veillard [25]
for O. The contraction scheme is the same as used in Ref. [26].

D: O[11.7.1/5.4.1], H[6.1/3.1]
Basis set C extended by the d-type function (a, =0.85) [27] on oxygen and
the p-type function function (a, =1.0) on H[27].

E: O[14.8.3.1/9.6.3.1], H[10.2.1/6.2.1].
Taken from Ref. [9].

The qualification of these basis sets in terms of the calculated SCF HF energies,
dipole moments, the dipole moment derivatives and the sum rules for different
components of the nuclear shielding tensor, is given in Table 1. The dipole
moment derivatives displayed in this table have been calculated numerically from
the dipole moment function. Since all basis sets considered in this paper do not
depend on the external electric field strength, the sum rule (12) is satisfied within
the limits of numerical accuracy of our calculations.

It follows from the data of Table 1 that fairly reasonable values of the dipole
moment derivatives can be calculated with rather poor GTO/CGTO basis sets
by the differentiation of the dipole moment curves. This has already been observed
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Table 1. Qualification of different GTO/CGTO basis sets for the water molecule with respect to the
total energy and molecular properties. All values in a.u.?

Property Basis A Basis B Basis C Basis D Basis E°
E° —75.7700493  -76.003430  —76.013331  —76.051226  —76.066379
m? 0.9560 1.0557 1.0548 0.8838 0.7831
€0 ~0.3533 -0.2481 —0.2064 -0.0801 —0.0048
Ery 0.1697 0.0999 0.0943 0.0079 -0.0072
Ep,2 0.0774 0.0364 0.0346 -0.0011 —0.0087
MG, —0.295 -0.514 —-0.512 —0.549 —0.557
M, ~0.270 —0.385 —0.336 -0.417 —0.429
M3, 0.148 0.257 0.256 0.276 0.278
M), -0.219 0.169 -0.170 —0.096 —0.058
M3, —0.180 -0.102 —0.115 -0.051 —-0.060
MY, 0.135 0.200 0.170 0.211 0.214
L Zavya,°¢ 2.596 4.680 5.762 7.680 9.756
A

Y Z¥ons" 0.782 2.196 3.188 6.916 9.808
A

® For the geometry and basis set details see text

°® Numerical calculations with the basis set of Lazzeretti and Zanasi [9]

¢ Evaluated from the numerical derivatives of the intramolecular electric field with respect to the
external electric field strength. The exact value is equal to 10

in earlier calculations [3-5] and has significantly contributed to the development
of the atomic polar tensor concept [1, 2, 13]. However, how poor the basis sets
A through D are from the point of view of their completeness is indicated by
the sums of diagonal components of the electric shielding tensor. Even for a very
extended basis set of Lazzeretti and Zanasi [9], the corresponding sum rules are
still considerably violated. This violation of the sum rule (11) for the nuclear
shielding tensor has, as illustrated by the data of Table 2, even more pronounced
effect on the dipole moment derivatives computed according to Eq. (9¢). For
basis sets A through D the magnitude of M EffAB and even its signs are incorrect.

Hence, the encouraging results of Lazzeretti and Zanasi [8, 9] are primarily due
to the use of very large basis sets. The direct extension of the method based on
the evaluation of nuclear shielding tensors to larger molecules does not appear
to be computationally feasible.

On the other hand the gradient methods advocated by Komornicki et al. and
Pulay et al. [4] require the analytic calculations of 3N gradients of all molecular
integrals. With increasing molecular size and reasonably large basis sets those
methods become quite time consuming. An intermediate solution of the
dimensionality-timing problem can be achieved by incorporating some elements
of the gradient approach in the selection of the basis set.

The success of the gradient method, or equivalently, the numerical differentiation
of the dipole moment function (Eq. 9b) follows from the explicit dependence of
basis set functions on the perturbation parameter X,,,. Hence, if the polar tensor
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is calculated according to Eq. (9b), the basis set becomes formally extended by
its first-order derivatives with respect to nuclear positions [17], while its actual
dimension is the same as for the reference molecular geometry. Hence, by
extending the given basis set by the first-order derivatives with respect to X4,
one can expect the values of My, and M)y, becoming close to each other.
This idea of exploiting the inherent dependence of basis set functions on the
perturbation strength has recently been used to derive large basis sets for accurate
calculations of molecular dipole moments [11]. However, when the initial basis
set is relatively uncontracted, the dimension of what is termed the resulting

polarized basis set can easily become prohibitively large.

The most important feature of the method devised for the derivation of polarized
basis sets is that the differentiation of a CGTO does change its ““quantum numbers”
as well as the contraction coefficients [11]. The latter are scaled by the appropriate
power of orbital exponents of primitive GTO’s contributing to the given CGTO.
For the initial CGTO, y!*¥(A), centered at A and characterized “by the set of
quantum numbers” [k] with the following expansion in terms of primitive
normalized GTO’s gt (A, o)

X[k](é) =Z cig[;‘k](é, a;), (13)

where «; denotes the orbital exponent, the corresponding polarized basis set
functions will have the following form

T XA ~ (X1 HA), XA, (14)
where

FE(A) =3 g4, o) (15)
and

ci=Vai- ¢ (16)

According to the concept of the basis set polarization, both functions resulting
from Eq. (14) have to be used to augment the initial basis set. Obviously, this
procedure will be of practical value compared to the gradient methods only if
the dimension of the original CGTO basis set is relatively small. Hence, the
method proposed in the present paper might be convenient for e.g. minimal or
double-zeta basis sets. The illustration of its efficiency is given in Tables 3
and 4.

The results recalculated in the present paper for the basis set of Lazzeretti and
Zanasi [9] are taken as a reference. It is worth while to mention that the
components of the electric shielding tensor computed with Basis E [9] are close
to those derived from the experimental data [9, 28] for infrared intensities.

Because of the increase of the size of polarized basis sets compared to the
dimension of the initial CGTO set we have also investigated the possibility of
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removing some components of polarization functions (15). It can be concluded
from the data of Table 3 that the [k+1] component resulting from the given y'*)
is more important than the component with lowered GTO quantum numbers.

However, removing the x'**' components (see Column 2 for Basis B), which
mostly contribute to the dimension of the final polarized basis set, deteriorates
the spectacular agreement between Column 3 for polarized Basis B and the results
for Basis E. It should be also pointed out that the results calculated with polarized
Basis A, which is derived from a minimal CGTO set, are at least qualitatively
correct.

The effect of the basis set polarization can also be seen from the diminishing
degree of violation of the sum rule (11). This sum rule is even better satisfied for
completely polarized bases A and B than for Basis E.

In general, the quality of the dipole moment derivatives calculated with the aid
of computationally convenient Eq. (9¢) and the polarized basis B is at least
competitive to the results obtained from the derivatives of the dipole moment
function for Basis E. Also the results which follow from the polarized minimal
basis set A are quite encouraging. It can also be seen from the data of Table 4
that the present technique provides a simultaneous improvement of the calculated
dipole moments and intramolecular electric fields.

4. Summary and conclusions

The present proposal of polarized basis sets derived from relatively small highly
contracted CGTO bases has been shown to result in the possibility of computing
the dipole moment derivatives from the nuclear electric shielding factors. By the
method of derivation of these basis sets the Hellmann-Feynman theorem with
respect to X is only slightly violated and calculations based on Egs. (9b) and
(9¢) become almost equivalent. The principal advantage of using Eq. (9¢) follows
from the fact that all dipole moment derivatives can be calculated by using the
same set of molecular integrals. Thesame is obviously true for the use of Eq.
(9¢) with Basis E. However, the basis set comprises as much as 91 CGTO’s while
the corresponding numbers for completely polarized bases A and B are 26 and
52, respectively. This opens the possibility of accurate calculations of molecular
dipole moment derivatives for much larger molecules.

In comparison with gradient techniques [4-6] the present method avoids the
calculation of all derivatives of molecular integrals with respect to X,, at the
expense of the increased size of the basis set. Hence, according to the ratio
timing/ dimension, the polarized basis sets can be considered as either competitive
or an alternative solution.

The concept of a polarized basis set derived from some standard initial set of
CGTO’s has previously been employed [11] in calculations of molecular dipole
moments. A similar idea has also been exploited by Nakatsuji et al. [29] for the
calculation of molecular force fields and force constants. All these approaches
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follow from the concept of perturbation-dependent basis sets. This dependence
can be either exploited explicitly by using different forms of the gradient method
[4-7,16-18] or indirectly through the perturbation-oriented extension of standard
bases. In both cases the quality of calculated properties appears to follow the
quality of the energy calculated with the given initial basis set [30].

The concept of polarized basis set should above all be understood as a devise
for the composition of suitable basis sets for accurate calculations of molecular
properties. It is obvious that with high accuracy demands one has to use appropri-
ately large basis sets. The method described in this paper will only help to define
the form of the basis set extension for the given property. With lowered accuracy
demands the present method can be efficiently employed in straightforward
finite-field calculations according to Eq. (9¢). As illustrated in the previous section
even for the polarized minimal CGTO basis set the accuracy of the calculated
data is quite satisfactory.

Finally, it should be mentioned that similar techniques, based on the interchange
theorem and the concept of polarized basis sets can be used in calculations of
other related properties, e.g. higher-order-derivatives of the dipole moment or
derivatives of higher-order electric properties. In particular combining the present
technique with that proposed for calculations of electric properties [11] can lead
to highly accurate derivatives of the polarizability tensor and predictions of
molecular Raman spectra.
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